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The Earth’s gravitational potential is now usually expressed in terms of a
double series of tesseral harmonics with several hundred terms, up to order and
degree at least 20. The harmonics of order 14 can be evaluated by analysing
changes in satellite orbits which experience 14th—order resonance, when the
track over the Earth repeats after 14 revolutions.

In this Report we describe our first evaluation of individual 14th—order
coefficients in the geopotential from analysis of the variations in inclination 3
and eccentricity of satellite orbits passing through 14th—order resonance under
the action of air drag. Using results from eleven satellites, we find the
following values for normalized coefficients of harmonics of order 14 and
degree ~ 14 and S& 14 , for & — 14, 15 ....22:

io 9
~~~ 10S~~14 r’~14 —38.5 ± 2.9 -7.8 ± 2.2

15 4.5 ± 1.1 —23.8 ± 0.3
16 —22.3 ± 3.6 —36.0 ± 3.8
17 —15.0 ± 2.6 16.8 ± 1.2 \ ~~18 —24.0 ± 4.9 —3.2 ± 3.7
19 —1.6 ± 2.8 —7.6 ± 1.0
20 8.8 ± 5.8 —15.4 ± 4.6
21 18,2 ± 3.6 —10.6 ± 1.9
22 —14.5 ± 8.1 9.9 ± 6.4

These values provide a test of the accuracy of the 14th-order coefficients
in comprehensive geoid models. Detailed comparisons wi th three recent models are

[ made, showing good agreement on some coefficients and discrepancies on others.
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INTRODUCTION

One of the finest achievements in the Earth sciences in the past few years
has been the accurate determination of the shape of the geoid , obtained by
assuming that the geopotential can be expanded in a double series of tesseral
harmonics, then analysing hundreds of thousands of satellite observations and
solving the equations to obtain values for hundreds of the harmonic coefficients.
Examples of such comprehensive geoid models already published include the

Goddard Earth Model 8 (GEM 8)1
, the Smithsonian Standard Earth IV.3 (SSE IV.3)

2

and the European GRIM 2 model3. The accuracy of the solutions has been improving

rapidly as more laser ranging data are included: the most recent Goddard Earth
4Model , GEM 10, includes 598 geopotential coefficients and is complete to degree

and order 21; GEM 10 utilizes 840000 observations including 200000 laser ranges

(many on Geos 3 and Lageos), and gives a geoid which may be accurate to about

1 metre over most of the world.

Though the overall geoid is well determined in these comprehensive solu-

tions, most of the values of individual geopotential coefficients of degree
5higher than about l~ are poorly determined: in GEM 7, Wagner estimated that

the errors exceed 302 for degrees higher than 12. The values of coefficients of

a particular order can, however, be accurately determined by analysing the orbits

of satellites which experience resonance of that order, as their orbits slowly

contract under the influence of air drag. For example, 15th—order resonance

occurs when the Earth spins once relative to the orbital plane while the satel ite

completes IS revolutions. The satellite then crosses the equator at intervals of

240 in longitude, and its track over the Earth repeats after IS revolutions. The

1 5th—order harmonics in the geopotential have maxima every 24° in longitude, and
therefore have the same effect on the satellite on every revolution. Consequently

the perturbations which they produce tend to build up, and if near—resonance
continues for several months, the resulting changes in the orbital parameters

(particularly the orbital inclination) are large enough to be analysed, and to

give an accurate value for a ‘lumped harmonic ’ appropriate for that orbit — the

lumped harmonic being a linear function of the individual harmonics of order 15
and degree 15, 17, 19 .... (if the inclination is being analysed). By obtaining

such values from orbits at differing inclinations, the values of the individual

coefficients can be determined. The 15th—order resonance is particularly fruit-

ful, because it occurs when the average height of a satellite over the Earth is

about 500 km, and numerous satellites are ‘dragged through’ 15th—order resonance.

Three years ago we analysed the changes at 15th-order resonance for 13 satellites,

—.~~ ~~~~~~~~~~~~~
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6,7obtaining values for coefficients of order 15 and degree 15, 17, 19 ....33
(from variations in inclination) and coefficients of degree 16, 18, 20 and 22

(from variations in eccentricity). These sets of values for 15th—order harmonic

coefficients were better than the conflicting sets in the comprehensive geoid

models existing at that time, and have subsequently been incorporated in GRIM 2.

The success of this analysis, which also yielded tentative values for
30th—order harmonics, encouraged the idea of studying other resonances. We

looked at the feasibility of utilizing ‘half resonances’, such as 29:2 (when the

satellite makes 29 revolutions while the Earth spins twice), and in 1976 Walker8

succeeded in analysing 29:2 resonance for Ariel I , and obtained values for lumped
29th-order harmonics; while RUler and King—Hele9 analysed 31:2 resonance for
Proton 4, though with less accurate results, because of the high drag.

The other obvious resonances to study are 14th and 16th order. The latter

is difficult because 16th—order resonance occurs when the average height of the

satellite is near 200 1cm, when the drag is usually severe, and the resonance does

not last long enough to build up a measurable perturbation. For 14th—order

resonance the average height is 800 1cm, and the problem is lack of drag: the
satellites linger on the brink of resonance for many years before experiencing
the effects fully. Afte r waiting for two years , we now have four satellites which
give good results at 14th—order resonance and, by combining these with three

analysed by Wagner5 and results from four high—drag satellites, we have evaluated

14th—order coefficients of degree 14, 15, 16 ....22, with tentative values for
higher degrees .

2 THEORETICAL EQUATIONS FOR ORBITAL CHANGES NEAR 14Th—ORDER RESONANCE j
If we accept that a double infinite series of tesseral harmonics is the best

representation of the geopotential,1° its longitude—dependent part can be written
in normalized form ’’ at an exterior point (r,8,A) as

~~ (cos 0) {~&m cos mA + sin n4N~ ~ ( 1)

& 2 m 1

where r is the distance from the Earth’s centre, 0 is co—latitude, A is
longitude (positive to the east), ~ is the gravItational constant for the

Earth (398601 ~~3/~2), R is the Earth’s equatorial radius (6378.1 1cm),

P~ (cos 0) ii the associated Legendre function of order m and degree & ,
and C&a and S

t. are the normalized tesseral harmonic coefficients, of which 015 
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those of order in — 14 particularly concern us here. The normalizing factor
11is given by

2 2(2& + 1)(L — in)!Nt — (& + in)! • (2)

The rate of change of inclination i caused by a relevant pair of

coefficients, C~~ and S~~ , near 8:a resonance may be written’2

— 
1 (~~j~~g~pGtpq (k cos i — in) 

tm * I
(~~ 

— JS&m
) exp{j (y$ — qw)~]

where V is Allan’s normalized inclination function’3, C is a functionLpq 12of eccentricity e for which explicit forms have been derived by Gooding , ‘1

denotes ‘real part of’ and j — . The resonance angle • is defined by

the equation

• — a(w + M) + — v) , (4)

where w is the argument of perigee, M the mean anomaly, ~ the right

ascension of the node and v the sidereal angle. The indices y, q, k and p

in equation (3) are integers, with y taking the values I , 2, 3 .... and q
the values 0, ±1 , ±2, ....; the equations linking I., in, k and p are’2:
m — y Ø ; k — y a — q ;  2p — & — k .

Here ~ — 14 and a — I , and the rn—suffix of a relevant (C
~~
,St

) pair
is given uniquely by the choice of y • The values of £ to be taken most be

such that £ ~ in and (2 — k) is even. The successive coefficients which arise

(for given y and q ) may usefully be gathered together in a lumped form and
written as12

_q k V’ q,k
_ _

cj,k
Cm — 

~~ 
C&m Sm — ~~~ Q~~’ S~~ , (5)

where £ increases in steps of 2 from its minimum permissible value t~ , and

the are constant coefficients with Q20 — I

For the 14: 1 resonance the most important terms in equation. (3) are likely

to be those With y — I , because y — 2 gives in — — 28 , and the 28th—order
015 harmonics are expected to have a much smaller effect. Of the terms with y — I

those with q — 0 , I and — 1 are likely to be the most important, since
terms with q — ±2 have an extra e factor, and e < 0.08 for the satellites

analysed here. So, for the present, we concentrate on the terms with
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(y,q) — (1,0), (1 ,1) and (1 ,—I ). With y — I , we have m — 14 and k — I — q

so that the three pairs of values of (y,q) above are associated with the follow-

ing three pairs of values of tq,kI: [0,1], Li ,o] and (—1 ,21. With these

assumptions, equation (3) may be rewritten for 14th—order resonance as’2 ’4

di 
_ _ _ _  

R ’4rR — .0,1 .0,1
— 

~ 
(;) 1; (14 — cos 1)F,5 14 7(S14 sin • + c14 cos

+ .L~!. (14)~ ,4,I4 ,7(~~~
0 
sin(• — w) — ,O 

~~~~ — w)}

(14—2 cog i)~ 14,14,6{~,~~
’2 sin ($+w) — ~

—i ,2 
cos(.+4

+ terms in ~I~ I COS (.Ø — qw)1 . (6)
sin j

_q,k
The three pairs of lumped coefficients Cm and S~ appearing in

equation (6) may be written in terms of the individual geopotential coefficients
(C~~,S~~) as indicated in equations (5). Explicitly, with the Q~~k expressed

— . 12—14in terms of the F functions, we have

— — 

F 17 14 8 /Rj~~ + ~ 19 1 4 9  /R (~~ — 7)
14 15,14 F15,14 ,7 ~a) 17 ,14 F15 14 7 U~J 19 ,14 ~~~‘

_ 1 ,O 
— ‘

~~I6 14 8 ‘R
e— 19~ 8 4 9C — C — - ‘ ( ‘ C + ~~~~~‘~~~~~~‘ ~~~~~ — ‘8’14 14,14 1SF1, ,, ~aJ 16,14 15P ~~J’ I8,14 ‘ ‘1..,14,7

~34,14 71 1 4 6 (; i~~~i6,i4 “ 1l1~4~~4~~ 
(~~)

4
E i8 ,14 

— ....
and similarly for S , on re~iacing C by S throughout.

The rate of change of eccentricity e caused by the (t ,in) harmonic near
8:a resonance can be written 12

— + ~ 
}~1{j~~~

41
(E~~ 

— jS
~~
) expJ (y~ — qw)] . o

..... (10)
I

_ _ _ _ _ _ _ _  ____________

— 
I 

- 
~~~~~~~~~~~~~ ~ —-— ,—-- . , .- -.  

~...— ~~~~~~~~~~~ —...-~- . ~~~~~~~~ ~ -~~~~~~ .‘-—~— . .—.‘—--- -.—— . —~-------- .—
~~~~~~
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The most important terms in (10) are likely to be those with (y,q) — ( I ,)) andr (I , —1), but for consistency with equation (6) we also give explicitly the terms

with (y,q) — (1,0) . Equation (10) may then be written for 14th-order resonance
as

de n R ’4 K — O,1 0~ 1
— .

~~

. (;) [e(;) ~15 14 7( s14 sin • + c 14 cos

— 
_ 1 ,O _ I ,O

— 1SF 14 , 4 7 .{c 14 sin(I — w) — S
14 cos($ —

— 
_ —1 ,2 _— 1 ,2

+ l I P
14 1~~6{~ 1~ 

sin(~ + w) — S14 cos (O +

+ terms in [e~~~~1{q — ~(k + ~)e2 } c0S (y• — qw)]] (II)

_q ,k
where the C

14 and S14 are given by equations (7) to (9).

3 METHOD

For a number of years we have been receiving US Navy orbital data on
selected low—drag satellites in near—circular orbits close to 14th—order resonance.

Wi th the data now accumulated on two of these satelli tes, 1 965— 16G and 1971—120B,

accurate fitting of the 14th—order theoretical equations is possible. Useful

results are also derived from the US Navy data on 1965—81k, a satellite of higher
eccentricity, which passed through resonance in 1970. We first fit the inclina-

tion and eccentricity data separately, using the computer program THROE 15
, and

then make a combined fitting of inclination and eccentricity, using the SINRES
program12 . Our fourth satellite is Ariel 2 (I964—15A), for which Cooding has

analysed the variations in inclination and eccentricity after 14th-order
12resonance

In determining the coefficients of 14th order and odd degree (degree 15,
17, 19 ...), we have utilized data from six other satellites. Of these, the

most important are three low-drag satellites accurately analysed by Wagner
5
:

1963—26k; I961—15G; and 1971—120A before resonance. The other three are high—
.16  . 17drag satellites, two analysed by Kloko~nik and one by Miller , for which the

results are inevitably of poorer accuracy, but still useful in filling gaps in

the range of inclinations.

In determining coefficients of 14th order and even degree (degree 14, 16,

18 ....), the four primary satellites provide the main data base; but results’8

fro. the high—drag satellite 1971—106A are also included, and some subsidiary

15 results from Wagner’s fittings of 1963—26k and 196I—15G are used.

_______________________________________________________________________________________________ ___________________ 
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4 THE INDIVIDUAL SATELLITES

4.1 The four primary orbits

4.1.1 Surcal 2, 1965—16G

Surcal 2 was one of eight small satellites launched on 9 March 1965 into

near—circular orbits having inclinations near 700 and heights near 920 km. Of

the eight satellites, 1965—l6G has decayed most rapidly: its period decreased

from 103.5 minutes initially to 101.8 minutes in July 1977, and it passed

through 14th—order resonance on 13 November 1976.

Values of inclination from US Navy orbits from January 1976 to July 1977
are plotted in Fig I , after removal of (1) lunisolar and zonal harmonic perturba

tions, using the computer program PROD’9 with 1—day integration steps; and (2)
the effects of atmospheric rotation and the precession of the pole, using THROE.

The unbroken line in Fig I shows the theoretical curve fitted by THROE with

(y,q) — (1,0), while the broken line shows the fitting of inclination and
eccentricity together using SIMRES, with (y,q) — (1 ,0), (1,1 ) and ( 1 ,—I). The

close agreement of the two curves is extremely satisfactory; the m s  scatter of
the points about the curve, 0.00120, is slightly smaller than the expected

accuracy of the US Navy orbits. The values of the lumped coefficients for

(y,q) — (1 ,0) from the THROE run are virtually the same as from SIMRES. Each

THROE run includes a calculation of the measure of fit E (where 
2 is the

sum of squares of weighted residuals, divided by the number of degrees of freedom~.
In the SIMEES fitting, i and e were weighted on the basis of the values of

c obtained in the contributing T}IROE runs. In Fig I the value of ~ increases

from —2.9 deg/day at the start to +2.8 deg/day at the end.

The values of eccentricity from US Navy orbits are plotted in Fig 2 after

removal of zonal harmonic perturbations. The unbroken line shows the curve fitted

by THROE with (y,q) — (1 ,1) and (1,—I), the broken line shows the fitting of i

and e together by SIMRES, with (y,q) — (1 ,0), (1 , !) and (1,—I ), and the dotted

line shows the THROE solution with (y,q) — (1,0) (1,±1) and (2,±1). The agree-

ment between the first two curves is good, but the points exhibit a curious
unfitted oscillation with an amplitude of order 0.0002 and a period of about

75 days. This cannot be due to lunisolar perturbations, which have been calcu—

lated and amount to only 0.00001; and there is very little improvement in the

fitting on taking into account the terms (y,q) — (I ,±2) or (0,3). But the

addition of the y,q) — (2,±I) terms does give a better fit: the measure of fit
t decreases f ro m 1.10 to 0.94. In the SINRES solution the ma scatter of the 015

. ~~~~~~~~~~~~~~~~~~~~~~~~~~ — - — -— - -— ~~~~~-.-~~~~-
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points about the curve is 0.00012, which is rather greater than the expected

accuracy of the US Navy values.

Because of these deficiencies in fitting, we looked with some suspicion on
the values of the lumped coefficients obtained from SIMRES for the (y,q) — (I,±I)

terms. This suspicion proved well founded: in the solutions for individual

coefficients of even degree, the lumped harmonics did not conform at all well

with those obtained from the other satellites, even when three of the four stan-

dard deviations were increased by a factor of 3. We therefore looked again at

the THROE runs for e and found that the run with (y,q) — (1,0), (1,±l) and
(2,±l) gave values in better conformity with tht other satellites. The values of

lumped coefficients for q ± I from this run were substituted in the equations

(without any modifications in sd) and gave better solutions for the individual

coefficients: although only two out of 14 equations were altered, the standard
deviations of the solutions were reduced by 15% on average. Our aim is to
obtain the best values of the individual coefficients, so this cx poet facto
alteration was welcome. This fitting is presumably better because the q — ± 2
(m — 28) terms are important f or this satellite, and should not be allowed to
contaminate the q — ± I (m — 14) coefficients which we are trying to evaluate.

Tables I to 3 record the values of the lumped harmonics as used in the
solutions for individual coefficients, for I 965—16G and all the other satellites.

The values f~r 1 965—16G in Table I are from the SIMRES fitting, the values in
Tables 2 and 3 from the THROE f i tting of e , as already mentioned. These Tables

also give the corresponding values of the ~~~~~ coefficients defined in
equation (5), and similar data for all the other satellites used.

4.1.2 I971—120B (Meteor 10 rocket?)

The Meteor 10 satellite and its rocket were launched on 29 December 1971

into a near—circular orbit at a height near 860 kin, at an inclination of 81.25°.

In April 1976 three fragments appeared in orbit, and the object 1971—120B, which

had previously been approaching 14th—order resonance, reappeared in an orbit which

had just passed resonance. Some difference of opinion exists about the identity

of 1971— 1 208, but this is irrelevant in our analysis.

Fig 3 shows the weekly US Navy values of inclination between April 1976

and August 1977 , after removal of the usual perturbations (lunisolar , odd harmonic,
etc). The unbroken line indicates the theoretical curve for (y,q) — (1 ,0)
fitted by TUROE. The ms scatter of the points about the curve is 0.0021. The

015 SIMRES fitting of i and e together, with equal weighting on the basis of the 
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THROE runs, is shown as a broken line in the few regions where it differs per-
ceptibly from the unbroken line. The value of 1’ increases from 0.34 deg/day

initially to 0.58 deg/day at the end. The fitting of inclination, and the
agreement between the two curves, is excellent. The values for the lumped

coefficients obtained from SI1’IRES for the (y,q) — (1 ,0) terms are

9_ 07 1 9_ 0,
•1

10 C 14 
— 3.7 ± 1.4 and 10 S14 — — 19.1 ± 1.2

Wagner5 obtained values of these lumped harmonics for 1971—I2OA before resonance.
His values are 1.4 ± 1.2 and —20.0 ± 1.2 . The agreement is excellent, con-

sidering that different ‘wings’ of the resonance are being analysed, and that
• neither analysis covers the e

0
xa

1
ct resonance. (In the final solution the sd was

doubled on both values of C~~ , to avoid their clashing with each other.)

The values of eccentricity for 197I—120B , af ter removal of odd zonal harmonic
per turbations, are plotted in Fig 4, and the unbroken line shows the theoretical
curve for (y ,q) = (1 ,1 ) and ( 1 ,—I) as fitted by THROE. The SIMRES fitting of i

and e together gives an almost identical result. Fig 4 shows that the fitting

isextraordinarily good, the m s  scatter of the points about the curve being
0.000035 , which is smaller than the likely errors in the values.

4.1.3 OGO 2, 1965—81A

Launched on 14 October 1965, OGO 2 entered an eccentric orbit with perigee
height 420 km and apogee 1520 1cm, at an inclination of 87.4°. Because of its j
low perigee, 1965—81A suffered much greater drag than the two satellites previously
discussed: the period, initially 104.4 minutes, steadily decreased under the
influence of air drag, and the orbit passed through 14th—order resonance on

17 June 1970.

In equation (6) for di/dt , the first term in curly brackets (for q — 0)

is usually dominant. But 1965—81A happens to be near the inclination (86.2°)

where ~15 14 7 is zero; also the eccentricity is quite large, 0.064, and con-
,

sequently the q — ±1 terms are larger. Numerically, we find

(14 - cos i)~~15 14 7}/ { ~~ 
(
~~
)
~~14 ,14 ,7} - 0.2 

- ~~~~~~~ • - - •  I 

1. ~-,., ( a.’ .S~ . “~~~~~~ ‘ “ ‘ ‘ ‘ “‘-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ •  •
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_1 ,0
Also it happens that at this inclination C and S are about f ive t imes

.0,1 ..O,1 14 14
larger numerically than C 14 and S14 . So we might expect that the
(y,q) — (1 ,0) terms in (6) would be negligible. This expectation is fulfilled.
Fitting i with (y g) — (1 ,0) alone gives poor results; a much better fitting
is obtained with (1 ,1) and (1,— I ) ;  and the use of all three pairs gives no
advantage.

So for 1965—81A, both the inclination and eccentricity are best f itted by
5 using the terms (y,q) (1 , 1) and (1,—I) only. Both orbital parameters therefore

provide values of the 8~ r~e lumped coefficients, and this satellite provides a

severe test of their compatibility. Table 4 gives values of these four lumped
coefficients obtained from the fitting of i alone by THROB, e alone by THROE

and i and e by SIMRES. The agreement is as good as can be expected from a
fitting of four coefficients to only 26 data points.

Figs 5 and 6 show the observational values and the fitted curves. The

fittings of i ic Fig 5 are quite satisfactory, but Fig 6 gives the impression

that the fitting of e alone is rather too oscillatory, and that the SI)~ ES

fitting is not oscillatory enough. This is in conformity with Table 4, where all

the values from the SINRE S solution are numerically smaller than those obtained
from fitting e alone. All—in—all, the fittings and the lump d cost ftci.nts are

good, considering the small number of observational values. In Pigs 5 and 6 the
values of • run from —1 2.4 deg/day at the beginning to +3.9 deg/day at the end.
The ma scatter of the values about the unbroken curves in Pigs 5 and 6 is 0.00120

for i and 0.00007 for e ; for the broken curves the corresponding values are
0.0013° and 0.00012.

For 1965—81A th. possibility arises that the terms with (y,q) — (1,±2) may
be important. Their inclusion was fruitless with i , but did improve the fitting
for a ; however, too many constants (nine in all) were being determined from

too few points (26), 50 it was no surprise to find that nearly all the lumped
coefficients war, undetermined and apparently much too large. To assess the

effects of the relevant lumped coefficients, (~ ,S)~~~ ’ and ~~~~~~~~ , their
valu es were computed from the values of the individual coefficients of degree 15,

17 , 19 and 21 (Table 5), and these values were used with THROB to calculate the
effect of the (y,q) — (1 ,±2) terms on e • The effect was found to be very small ,
the maximum change in a during the run being 0.000012. So the (y,q) — (1 ,±2)
terms were ignore d, and we adopted the SINRES so1i~ti~on for (y,q) — (1,±1) given

in Table 4. In the final solution the sd of S11
’ was doubled, but the other

015 values fitted wall.
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Table 4

Values of lumped coefficients obtained from 1965—81A by fitting i alo~~~
e alone, or i and e together

From i alone From e alone From e and I
THROB THROE SIMRZS

l ,0
—55 ± 7 —152 ± 18 —60 ± 7

_ 1,0
S14 —32 ± 9 -92 * 26 —35 ± 11

C14 —43 ±7 63± 18 —52 ± 8

S
14 9 ± 17 294 ± 12 12 ± 17

4.1.4 Arid 2, 1964—ISA

Ariel 2, the second Anglo—US satellite, was launched on 27 March 1964 into
an orbit with inclination 51 .64° with period 101.3 minutes. Initially, the

- 
• 

heights of perigee and apogee were 290 and 1360 km respectively, and the eccen-

tricity was 0.075. Using Minitrack observations, Gooding2° computed the orbit

at 210 epochs during the first year after launch, and has now12 determined values
of lumped 14th—order harmonics by analysing the variations in inclination and

eccentricity; the orbit was already post—resonant at launch. Because of the

relatively high eccentricity and the multitude of values, the best fitting is

obtained with eight pairs of values of (y,q) — the basic trio and five other

pairs. The values of inclination and eccentricity, and the curves fitted by

SIMBES, are shown in Figs 7 and 8. Although the fittings do not look so convin—
dug as those in Pigs I to 6, there are far more values available for Arid 2, and

th. variations in the orbital parameters extend much further away from resonance,
because of the high eccentricity , as also happens f or example21 with Vanguard 3. - 

-

For An al 2, the Q~ coefficients do not fall off so rapidly as for the

three previous satellites (see Tables 1 to 3), and the neglect of harmoQics of
degre. greater than 23 may be a source of error. The effect of these higher

harmonics was calculated using the values in Tables 5 and 7, and the only sd

needing to be increased for this reason was that of ~ 
‘ , which was increased C

from 23 to 30 ~ 10 • The numsric al value s of the lumped harmonics as used in
th. solu tions are given in Tables I to 3.
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4.2 The orbits analysed by Wagner

In a thorough assessment of the accuracy of the Goddard Earth Models,

Wagner5 has analysed the 14th—order resonant variations in inclination (but not

eccentricity) of three satellites relevant to our work. The first of these three

orbits is that of 1963—26A, which passed through 14th—order resonance in March

1968, with inclination 49.7° and eccentricity 0.057. The second orbit is that

of 1961—15G, a fragment from the exploded rocket of Transit 4A; this fr.igment
passed through 14th—order resonance in September 1971 , with inclination 66.80 and

eccentricity 0.0)7. The third satellite is 197 1— 120A , Meteor 10, which Wagner
analysed for the years 1972—1975, some years before it was due to reach resonance.
As already mentioned, Wagner’s values are close to those we have obtained from

1971—120B after resonance, and the two satellites, which are in nearly identical

• orbits, should together define a reliable mean value.

Wagner ’s values for the q = 0 coefficients from these three satellites
_O,1

• are given in Table 1 , the standard deviation for C
14 

for 1971— 120A being

doubled, as mentioned in section 4.1.2.

A fourth orbit analysed by Wagner, or rather a set of orbits of several

fragments from the 1965—82 launch at inclination 320, has been used to strengthen
our 8—coefficient solution for odd—degree coefficients. For 1965—82 the values

of the Q~ are largest for t — 23 to 29, and the geopotential coefficients of

these degrees will make a dominant contribution to the lumped coefficient. So

1965—82 is unsuitable unless at least eight coefficients are being evaluated.

Numerical data appear at the end of Table I.

For 1963—26A and 1961— 15G , Wagner also obtains values for the q ±- 1
coefficients. These are given in Tables 2 and 3, but the standard deviat ions —

obtained by Wagner5 have been doubled , because his values are derived from the

variation in inclination only, and are not combined inclination—eccentricity

fittings, as our q — ± I values are.

4.3 The four high—drag orbits

1(lokoZtnik16 has analysed the 14th—order resonant variations in inclination
(but not eccentricity) for two satellites with perigee heights near 200 km,
namely Intercosmos 9, 1973—22A, inclination 48.4°, and Intercosmos 10, 1973-82A,
inclination 74°. Because of the high drag, the values of the lumped harmonics
are rather inaccurate, and in the solution it was necessary to increase the sd

015 of 1973—22A by a factor of 2 and the ad of 1973—82A by a factor of 5.

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • _ _ _
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Hiller17 has recently analysed the 14th—order resonant variation of inclina-

tion and eccentricity for China 2 rocket, 1971—18B, at inclination 69.9
0, but

• again the orbit did not remain near resonance for long enough to allow an accurate

analysis, and it was necessary to increase the sd of C1, by a factor of 2.

Despite their limitations, the results from these three orbits helped to
fill gaps in the coverage of inclination, in the odd—degree solutions. The

values of the lumped coefficients from the three orbits are given in Table 1.

The four th high—drag orbit used is that of Cosmos 462, 1971—106A, with
perigee height 240 km, which has been analysed by Walker 18

. This orbit has some

similarities with 1965—81A. The q — 0 terms are found to have little effect, and
the analysis yields values of the q — ±1 coefficients, which are given in Tables 2

and 3. In the analysis of 197 1—IO6A, the perturbations in i and e due to

q — ±2 terms were calculated, using lumped coefficients evaluated from the solu—
tions of Table 5, and the values of i and e were then cleared of these per-

turbations. This is a refinement which should always be used in resonance analyses

if reliable lumped harmonics can be pre—calculated.

4.4 Data not used

Many satellites move in orbits which are close to 14th—order resonance but
do not experience exact resonance. These orbits in ‘shallow resonance’ (as it

is often called) have been extensively studied over the years and utilized in

the comprehensive geoid models. Also Reigber and Balmino22 have obtained solu—

tions for the individual coefficients of 14th order up to degree 30, from analysis
of a number of shallow resonant orbits. Their results have been incorporated in

the GRIM 2 model; so we thought it best not to mix their values with ours , but to

obtain an independent solution for comparison.

5 THE SOLUTIONS

5, 1 Solutions f or odd—degree coefficients (9. IS , 17 , 19 ...) - •

The fittings of the (~r ,q) (1 ,0) terms give us nine values of the
lumped coefficients with Iq,kJ — 10,11, listed in Table I. Inserting these
values in equations (5) , ~ie obtain nine equation s for 14th—order C—coefficients
of odd degree ,

— 0 ) —  0 ) —  _ 0 , 1C + Q ’ C  + 1’’ C +13, 14 17 17 , 14 “19 19 , 14 ‘ — 14

with nine similar equations for the coefficients . The numerical values

of the terms and lumped coefficients for each satellite are given in the
first nm. rows of Table I .  01!

~~. 
_ j~~ —5 —~~~~~~~ ~~~_;_. 
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We follow the method which proved successful in solving for 15th—order
• coefficients. To the nine equations of the form (12) we add constraint equations

of the form
C9., 14 — 0 ± io—5,t

2 (13)

and then solve by least squares for 3, 4, 5 ....r coefficients from 12, 13, 14

14 ....(9 + r) equations. The value of r is chosen empirically after examina-

tion of the solutions, to gi-~e what is believed to be the best set of values for
the individual coefficients. The quantity io 5,t2 derives11 from “Kaula’s rule

of thumb” for the order of magnitude of a coefficient of degree £ • Now that

individual coefficients are being evaluated with better accuracy, it is becoming
apparent that , at least for 12 < £ < 30 , a better average value for the
coeff icients would be about 0.7 x io 5,t 2 , with io 5,t2 itself regarded rather
as an upper limit. We found that the standard deviations of our solutions were

slightly improved by making this 302 reduction in the right—hand side of

equation (13); but the values of the coefficients were little altered, so it
seemed better to allow the more relaxed constraint, as given in (13).

In the course of the solutions of equations (12) and (13), some values of
lumped harmonics were found to be persistently ill—fitting. We tried doubling

their assumed standard deviations, and if the solution was significantly improved,
the doubled sd was used*. The changes made have already been mentioned; the

values given in Table I incorporate the increased sd and are those used in the
-

• 
solutions.

When the nine equations itemized in Table 1 , together with the constraint

equations (13), were solved by least squares for 3, 4, 5 ....9 coefficients, the
values of c , the measure of fit, were 2.13, 1.08, 1.07, 1.07, 1.06, 1.06, 1.06
for the C—coefficients, and 1.23, 0.59, 0.59, 0.58, 0.58, 0.58, 0.58, for the

• S—coefficients. (As before, ~
2 jg defined as the sum of the squares of the

weighted residuals divided by the number of degrees of freedom, which here is
always 9.) Since c fails to decrease when the number of coefficients evaluated
goes beyond 4, the 4—coefficient solutions, for £ — 15, 17, 19 and 2 1 , are recour-
mended as best, and are underlined in Table 5.

• * Purists sometimes query the legitimacy of this procedure. Our aim is to derive
the best possible values of the geopotential coefficients: this aim is not
helped by giving too high a weight to inaccurate data. The inaccurate values

) 15 could be omitted altogether; but thiø would imply a judgment that zero weighting
• is optimal, which is unlikely to be true unless the data are entirely spurious.

Our procedure is an attempt to optimize the weighting empirically.

~~~
- - - - j • -
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The 8—coefficient solutions are also given in Table 5, however, for two
reasons : (a) to show how the values of the first four coefficients are affected
by inclusion of higher harmonics; and (b) to provide a comparison with (~M 10 and
GRIM 2, which go to degree 29. When solving for eight coefficients, we include
a further equation, that from the 1965—82 satellites at 320 inclination, given

in the last row of Table 1.

Table 5

Solut ions for geopotential harmonics of order 14 and odd degree

0~~ 10~~a c~ 14 5t I 4

I 4—costS 5-costS ~~~ 10 ~~fl ( 2 SSE IV 4—cost S 8—cost! ~~~ 10 (
~~DI 2 SS* IV

IS 4. 5 ± I.] 5.1 2 3.8 3.9 2 .2 4.8 —23.8 ± 0.3 —24.2 ± 1.8 —24.6 —24.3 —33.8
I? ~J3.0 ± 2.6 —17.4 2 6.0 — 15.9 —26.3 — 13.7 16.8 * 1.2 17.7 2 2.7 10.9 9.2 13.2
19 .11 ± 2.8 0.9 * 4.2 —3.8 —7.6 —3.2 —7.6 2 1.0 —7 .9 ± 1.9 —12.6 —12. 1 —4.4
21 18.2 ± 3.6 15.9 ± 12.4 19.7 0 9.3 —10.6 ± 1.9 — 11.3 * 5.7 10.3 —7. 1 14.0
23 - 8 2 10 8 9 17 0 * S —5 20 —2 1
23 —16 ± 12 —23 Il —22 I * 6 17 —2 21
27 1 4 2  13 23 —22 Il 2 *  7 6 15 —3
29 —2 2 12 —II 17 —2 2 6 10 IS

Table 6

Weighted residuals for each satellite in the
4—coefficient solution of Table 5

__________- 

Residuals for
_O ,l _.O,l

Satellite C14 S14

I973—22A —1 .33 —0.58
1963—26A —0.04 0.35
1964—ISA 1.34 —0.76
1961— 15G —0.09 —0.00
1971—18B 1.53 0.72
1965—16G 0.02 —0 .01
1973—82A — I .3 5  —0.68
1971—120A 0.90 —0.37
1971—12DB —1.05 0.36

~~•~~~~~~t ~~~~~~- ---• ~~~-•-~~~~— - - - - - - - - 
_ _ _  ~~~~~~~~~~~~~~~~~~~~ -~~~
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The weighted residual, that is
(observational value minus computed value) 4 (standard deviation),

for each satellite in the 4—coefficient solution is given in Table 6. The resi—

duals for the 8—coefficient solution are very similar. It is obvious from

Table 6 that the formal standard deviations of the solutions for the C—coefficients

could be reduced by omitting the three high—drag satellites. When the equations

are solved with these three satellites omitted, it is found that the values of the

C—coefficients remain within ~ ad of those in Table 5, but the standard deviations
are reduced by 20% on average. Although this solution is formally more accurate,

it is probably less reliable because of the wider gaps in the coverage of inclina—
tion, so we prefer the solution given in Table 5.

Equation (6) shows that a truer measure of the strength of the resonance
effects is given not by the lumped coefficients alone but by these coefficients
multiplied by F15 14 7 and values of the lumped coefficients multiplied in

this way are given in the last two columns of Table I (which also shows that the

most accurate results are those from 1961—15G, 1965 16G and 1971—I20).

The values of the lumped coefficients multiplied by F are also15,14,7
plotted in Fig 9, with curves showing the values given by the 4—coefficient

solutions. It is seen that the solut~Lons are entirely satisfactory, in the

sense that there are no strong oscillations in the gaps between the data points.

-
‘ 

The points indicated by the triangles in Fig 9 are at an inclination of 86.2
0
,

where ~ = 0 : a satellite in a circular orbit at this inclination would
15,14,7

suffer no perturbation in inclination as it passes 14th—order resonance (except

possibly from 28th—order coefficients).

5 2  Solutions for even—degree coefficients (9. = 14, 16, 18 ...)

For the orbits of the four basic satellites and 1971—106A, the (y,q) (1,±1)
terms in the fittings of the variations in eccentricity and inclination have given
two equations each for the 1 4th—order coefficients of even degree, of the form

— 10— 10—C + n ’ C  + A C + C14 ,14 “16 16 , 14 “18 18, 14 ‘ 
CO 

14

— — 1 2— —1 ,2
C ~~~~ ‘ C + “ ‘ C +14, 14 “16 16 , 14 “18 18, 14 “ C 14 (15)

0

-1

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _

L~ ~~~~~~~~~~ ~~~~~~~~•~~~~• •  5_~~~~_ ___ -i_____--
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and similarly for S , on replacing C by S throughout. The numerical values

of the Q9. and the lumped harmonics on the right—hand side, for each of these
satellites and for the two satellites of Wagner, are given in Table 2, for

• equation (14), and Table 3, for equation (15). To these 14 equations for

(and 14 for ~ ~,) we add the constraint equations (13), and solve for9., ., 9., .,
r coefficients from (14 + r) equations, with r — 3, 4 , ....9

With 14 equations to be fitted simultaneously, there is little scope for

the values of the coefficients to adjust themselves to fit non—conforming lumped

values. So it was no surprise to find a number of obstinately ill—fitting

lumped coefficients, for which it
1
w~s advantageous to increase the sd . They

were as follows. The sd of C 
‘ 

was doubled for 1961—15G and 1971—120B ,14 .1 ,0
and multiplied by 10 for 1971—106A. The sd of $ was multiplied by 5 for

197I—106A. The ad of 
~ I4

’ was doubled for 1963—26A and 1965—8IA. The

values given in Tables 2 and 3 are those used in the solutions, af ter these )
increases in sd have been made. —

The 14 equations of type (14) or (15), itemized in Tables 2 and 3, plus

the constraint equations (13), were solved by least squares for 3, 4 ....9

coefficients. The values of c , the measure of fit, were 1.03, 1.01, 0.91, 0.89,
0.89, 0.89, 0.89 for the C—coefficients and 0.92, 0.74, 0.69, 0.68, 0.68, 0.68,

0.68 for the S—coefficients. For both C and S , therefore, c decreases
significantly — by 10% and 7% respectively — on going from the 4— to the
S—coefficient solution, but does not decrease significantly thereafter. So the

S—coefficient solutions , for £ — 14, 16, 18, 20 and 22, are recomaended as the

best, a~d are given underlined in Table 7. The 9—coefficient solution is also
given in Table 7, however, to show how little the solu tion is affec ted by 

- 

-

including higher—degree coefficients, and to provide a comparison with GRIM 2.

Equations (6) and (II) show_that a be~~1~r measure of the 1eZ/ect of the

lumped coefficients is given by F14 14 7C14 and F 14 14 6c
14 

than by the

lumped coefficients alone. The values of these quantities (S as well as C) are

listed in the last two columns of Tables 2 and 3, and the values are plotted in
Figs tO and II , with the curves given by the S—coefficient solution. From Fig I t

alone it may seem at first sight that the curves are making rather a poor job of
fitting the points; but the fit is of course simultaneous for the C (or S)

values in both Fig 10 and Fig II , so that the form of the curve is a compromise

between their conflicting claims.
015 
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Table 7

Solutions for geopotential harmonics of order 14 and even degree

Ct ,14 ~&,I4

I 3—co.!! 9—costS CR14 10 CR114 2 SSE IV 3—cosff 9—co.!! o m I O  ~~~~ 2 1~~~iv

14 —38.5 ± 2.9 —38.9 ± 3.1 —51 .2 —69.3 —36.3 —_7.8 * 2.2 —8. 1 * 2.4 —3.4 —1. 2 —3.2
16 —22.3 ± 3.6 —22.6 * 4.2 — 18.8 —29.8 —20. 1 —36.0 2 3.8 —35.3 ± 4.0 —37.9 —40.6 —33.3
18 —24 .0 ± 4.9 —2 1.6 ± 5.8 —8.0 — 10 .1 0.6 —3.2 * 3.7 —4.4 ± 4.2 —10. 1 —23.8 —27.2
20 8.8 ± 5.8 7.4 ± 6.7 13. 1 8.0 17.3 —15.4 2 4.6 — 13.8 ± 3.3 —10.6 —44.3 —26.6
22 — 14 .3 * 8.1 —1 1. 2 * 9.9 9. 7 —23.7 —0.8 9.9 ± 6.4 7.2 ± 8.0 6.2 —1. 2 6.6
24 — 8 ± 1 2  —1 8 18 —44 5 * 9  4 5 —21
26 0 * 1 1  7 25 —3 ± 8  I .4

• 28 I * II —7 —1 9 —2 ± S —II  4
30 0 ± 1 0  II 0 ± 7  7

Table 8

Weighted residuals for each satellite in the
5—coefficient solution of Table 7

Residuals for
_ 1 ,0 ...1 ,0 _— I ,2 _—1 ,2

Satellite C14 S14 C14 S14

1963—26A 0.49 —0.29 0.64 —0.95
1964—15A —0.72 0.54 —0.26 —0.15
1971—106k 0.04 —1 .17 —1.14 0.71
1961—ISG —0.07 0.18 —1 .43 —0.07
1 965— 16G 0.68 0.30 —0.16 —0.51
1971—1203 0.43 0.01 —1.75 -0.08
1 965—81A 0.13 —0.31 0.77 1.20

6 COMPARISONS

6.1 Odd—degree coefficients

Comparison between the 4—coefficient and the 8—coefficient solutions in

015 
Table 5 shows that the solutions are extremely stable. The values in the
8—coefficiant solution differ from the corresponding values in the 4—coefficient

solution by less than the standard deviation of the latter (except for S15,14
where the sd is unusually small). This stability is a very welcome feature of
the solutions.
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Comparison of the 4— and 8—coefficient solutions with GEM 10 shows good

agreement ~~~ng the C coefficients (within 1.5 ad) ; but our S coefficients,
which have very low standard deviations, do not agree so well with GEM 10 (except

for £ — IS, where the difference is only 3%).

Comparison with GRIM 2 shows poor agreement with C coefficients and better

agreement than GEM 10 for the S coefficients.

Comparison with SSE IV.3 shows quite good agreement with our solutions for

the C coefficients, but considerable divergences for the S coefficients.

Our value and those from the three comprehensive geoid solutions are

largely independent, but not entirely so, since Wagner’s re8ults have some

influence on GEM 10, as well as on our values .

The GEM 8 model agrees with our values just about as well as GEM 10. How-

ever, no detailed comparisons are made, because we feel that the strongly

oscillatory high—degree terms in GEM 8 for the C coefficients (the values are

—27, +26 and —41 x IO~~ for £ = 25, 27 and 29) are more likely to be an ar-tefact
of the solution than realistic values. This oscillatory tendency may also affect

GEM 10 and SSE IV.3, though to a lesser extent.

Although the three comprehensive models do not always agree either with

each other or with our values, they agree much better with our values than

happened with the 15th—order coefficients, no doubt because several shallow

resonant 14th—order orbits are included in the comprehensive soluti~ns. The

agreement is best for £ — 15, 17 and 19, with all four solutions indicating:

a low positive value (around 5*) for c15,14 and a value close to —24 for

S 15 14 ; 
— —

a value near —IS for C17,14 and near +15 for 
~17,14 ~

for C
19 14 the verdict is ‘small and probably negative’, and for

s19,14 ‘negative and larger’ (near —10).

F~r higher values of £ the agreement is not so good, and the near—unanimity

over C25,14 and c27 14 may be a chance effect.

The comparison may perhaps fairly be sumsarized by saying that our solutions

and those from the comprehensive models are recognizably similar, but further work
on both methods is needed to achieve better agreement.

• 
£1
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6.2 Even—degree coefficients

Comparison of our 5—coefficient and 9—coefficient solutions in Table 7

shows that, as for the odd-degree solutions, the values are extremely stable.

The values in the 9—coefficient solution differ from the corresponding values

in the S—coefficient solution by less than half the standard deviation of the

latter. The chief imperf-ction is the rather large standard deviations, which

are two or three times greater than for the odd—degree coefficients. This

reflects the fact that the most easily measured orbital change at resonance, that

in the inclination, usually depends primarily on the odd—degree coefficients.

Comparison of our 9—coefficient solutions with the comprehensive models

shows considerable differences in the C terms for £ — 14 and 18. For £ CO 14

the values* from GEM 10, GRIM 2 and SSE IV.3 are between —SO and —70, whereas
our solution gives —39 ± 3. For £= 16 , the three comprehensive models differ,

but their average is —23, in agreement with our values. For £ 18 our value

is —22 ± 6, while the three comprehensive models give values between —10 and +3.

For the S coefficients the agreement is much better, and GEM tO agrees with our

values to within 1.4 sd for- all values of 9. (up to 28). For £ 14 our

S—coefficient S solutions give —8 ± 2, while the other three range between —5

and — 1. For £~ 16 we have —36 ±4, while the other three range between —41 and

—33. For 9.— IS the agreement is not so good. For 9 2 0  the GRIM 2 value of

—44.5 seems unlikely, but the other two are fairly close to ours. For 9. — 22 all
three are within 2 ad of ours.

For even—degree coefficients, our values and those from the comprehensive

models are almost completely independent, since Wagner ’s limited results for
(y,q) — (1, ± I) have very little influence on our solutions.

The conclusions from Table 7 are (a) that the agreement is already good

for S9.1 4 , but there are di screpancies for C9. 14 and (b) that the standard

deviations of our solutions need to be improved by analysis of further low—drag

orbits.

7 CONCLUSIONS

We have for the f i r s t time de termined the values of the coefficients of
individual 14th—order harmonics in the geopotential from analysis of changes in

the inclination and eccentricity of satellites with orbits which passed through

14th—order resonance. Results from the eleven orbits are used. Although values

— up to degree 30 are obtained , the recoumended set of values runs from degree 14
013 to 22 only, and is as follows:

* In this paragraph we drop the factor 10~~.

,1 
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£ b C  b0~ ’
— 

£,14 ~L,l4

14 —38.5 ± 2.9 —7.8 ± 2.2
15 4.5 ± 1.1 —23.8 ± 0.3
16 —22.3 ± 3.6 —36.0 ± 3.8
17 — 15.0 ± 2.6 16.8 ± 1. 2
18 —24.0 ± 4.9 —3.2 ± 3.7
19 — 1.6 ± 2.8 —7.6 ± 1.0
20 8.8 ± 5.8 —15.4 ± 4.6
23 18.2 ± 3.6 —10.6 ± 1.9
22 — 14.S ± 8,1 9.9 ± 6.4

Tables 5 and 7 show that these values are not appreciably disturbed when higher—

degree coefficients are included in the evaluations. The odd-degree coefficients,
derived primarily from changes in orbital inclination, are more accurate than the

even-degree coefficients, which are determined primarily from changes in

eccentricity.

Values obtained in this way from resonance effects provide an independent

test of the accuracy of the comprehensive geoid models derived in recent years.

Detailed comparisons with three of these models, GEM 10, GRIM 2 and SSE IV.3, show

that their values of 14th—order harmonic coefficients are generally similar to

ours: see Tables 5 and 7. The best agreement — within 1~ sd for the even—degree
S coefficients and the odd—degree C coefficients — is with GEM 10. However,

there are also significant discrepancies, and further work on both methods is

needed to achieve better agreement.

015
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